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We consider fast algorithms of wavelet decomposition of a function f when
discrete observations of f (supp f<[0, 1]9) are available. The properties of the
algorithms are studied for three types of observation design which for d=1 can be
described as follows: the regular design, when the observations f{(x;) are taken on
the regular grid x;=i/N, i=1, .., N; the case of a jittered regular grid, when it is
only known that for all 1 <i< N, i/N<x;<i+1)/N; and the random design case;
in which x;,, i=1,.., N, are independent and identically distributed random
variables on [0, 1]. We show that these algorithms are in a certain sense efficient
when the accuracy of the approximation is concerned. The proposed algorithms are
computationally straightforward: the whole effort to compute the decomposition is
order N for the sample size N.  © 1997 Academic Press

1. INTRODUCTION

The now classical orthogonal (biorthogonal) wavelet transform of a
function fe L,(R) can be written as

f(x)= 3 i)+ 3 Y Butulx),

keZ j=0kez

where
d(x)=¢(x—k) and  Yu(x)=2""Y(2/x —k).

Here ¢(x) and (x) are the scale function and the mother wavelet respec-
tively. Wavelet coefficients are given by the integrals

= [ ) B dx, = [ S3) T lx) dx (1)

(in the orthogonal case, ¢ = ¢ and =)
If fis C* and the wavelet i is compactly supported and orthogonal to

x!, 1=0,.., M with s<M+1, the sequence B decreases as fast as
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2-/+V2) when j increases (this is easily guessed by using Taylor’s for-
mula). Thus, large values of 8, are encountered only when f'is irregular in
the neighborhood of the 27/k. These ideas are rigorously formalized in
Section 3.2.

Generally, the values of f are not available except for a sequence
fi=f(X,), i=1, .., N, of discrete observations; the analyzing wavelets i/
and ¢ generally cannot be expressed in a compact analytical form. Thus the
integral above cannot be computed exactly, and some approximate method
should be used to compute the quadrature in (1). On the other hand, the
main interest of using wavelets in data compression and estimation lies in
the fact for a smooth function f the coefficients f, decay rapidly, and con-
sequently, the wavelet projection P; f,

Jo
Pif(x)= 3 aedilx)+ 2 3 Bubulx), (2)
keZ j=0keZ

converges rapidly to f when j, increases. We will seek to preserve this
property when computing the empirical wavelet coefficients of f on the
basis of observations f(X;). The objective of this work is to design “fast”
numerical algorithms to compute the “estimates” of true wavelet coef-
ficients f3; when discrete observations of f are available. For the sake of
simplicity we suppose that f'is a compactly supported function.

1.1. Fast Wavelet Algorithms

In the whole paper, we will work under the following assumption
(cf. Section 2.1):

Assumption 1. The tuple (¢, , ¢, ) forms a biorthogonal multiresolu-
tion analysis such that ¢ and y are CM*1for some MeN. (¢, , ¢, ) have
compact support. i is orthogonal to polynomials of degree <M.

Note that by Corollary 5.5.2 of [4], in the orthogonal case, the
orthogonality to polynomials required in the assumption is a consequence
of the regularity.

The algorithm for computing the wavelet coefficients a; and f; is based
on a calculation of the coefficients

a= | f(x) 2724(2x — k) d, (3)

at one fine level j (ie., large j) which leads to the a; =ay’s and £,,’s,
j'=0, ..., j, through the filtering relations (18) and (19) below. This is this
last step which requires the multi-resolution structure imposed in Assump-
tion 1. Since 2/¢(2/x — k) is a function with integral 1 with a sharp peak on
277k, 27 is quite close to f(2~’k). The formulas we propose below are
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finer approximations of this integral, consistent with the smoothness of f
and the observations of this function we have at our disposal.

1.2. Regularity Classes

It is evident that for the estimate /), of f, based on observations f, .., fx.
to converge to f with a good rate, we have to suppose that f satisfies some
regularity constraints. In this paper we consider the Besov constraints.
These constraints can be easily expressed in the form of conditions on
wavelet coefficients of the function f. As a consequence, in the wavelet
decomposition of a function from a Besov class generally most coefficients
are close to zero and can be neglected. Finally, we use the Besov classes
because of their exceptional expressive power (cf. [ 17]). Proposition 1 says
that functions from the Besov spaces can be “well” (in some sense)
approximated by piecewise polynomials.

We will develop fast approximate quadrature formulas to compute
wavelet coefficients which are exact for the polynomials. Then good
approximation of the underlying polynomials will imply optimal rates of
convergence for a function f satisfying Besov constraints. The calculation of
the wavelet coefficients a; depends on the nature of points X; where the
observations of f are taken. Let us now turn to the model of observations.
We suppose that the available sample (f;), i=1, ..., N, is noiseless, i.e., we
consider the model f; = f(X,), and we call the vector X = (X, .., Xy)7 the
observation design.'

1.3. Observation Design

We consider two types of observation designs:

e observations f,, where k is a multi-index taken on a regular grid,
ie, Xo=(ky/n, ..k ), k;=1,..,ni=1,..,d n=2/. We refer to this case
as a regular sampling, or regular design. A variation of the regular design
is the situation when n observations of means A4, .., 4{, _, are available,

A[:f fx+k)ynyde, k=1, .0 1) (1 o),

where I=[ —1/2, 1/2]% Following Donoho [6], we refer to this case as a
regular boxcar design. This type of observation is usual in the problems of
computer vision, when the average intensity over the receiving retina cells
is measured;

o the case of irregular design, when N observations f;= f(X,) are
available at the points X;, i=1, .., N, which do not constitute a regular

A4

grid. We are particularly interested in two special cases of irregular design:

! From now on we use A7 to denote the transpose of A.
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1. Jittered regular design is a simple case of irregular sampling. In
this case we suppose that the observations f( X)), where k= (k, .., k,) is a
multi-index (k;=1, .., n, n“=N), are available. Here nX, belongs to the
cubes k 4+ [ —1, 0]% A particular case of this is a random jittered grid, when
X, are independent random variables, and each n.X is uniformly distributed
ink+[—1,0]7 (cf. [10, Sect. 1.9]);

2. Random design, when observations X;, i=1,.., N, are inde-
pendent and identically distributed on [0,1]¢ with some density
P(X): 0 <Piin <P(X) < Prax < 00. This situation is common when general
scattered data models are concerned.

1.4. Organization and Notations

The paper is organized as follows: first in Section 2 we briefly introduced
and discuss the algorithms we use to compute wavelet coefficients for dif-
ferent cases of observation design. For the sake of clarity the algorithms
are presented in this section in a one-dimensional context. However, they
can be easily generalized for the general multi-dimensional case. Then in
Section 3 we recall some notions on wavelets and Besov spaces and intro-
duce notations to be used later. Then we study the properties of proposed
algorithms in case of regular design in Section 4. Finally, we consider the
case of irregular design and provide the estimates of the accuracy of algo-
rithms for the case of jittered grid and random design.

The Fourier transform of a function f is

= [ flx)y e ax

For sequences «; and 8, we will denote

iy = (Zhaal?) 18- (=) o)

k

Recall that L, is the classical Lebesgue space with the norm
111, =(] g”( dx 7, We denote by C a generic positive constant.

2. ALGORITHMS DESCRIPTION

2.1. Regular Point Design

A simple (or naive) method in this case consists of considering the values
2777f, as the wavelet coefficients o;. This method was introduced by
Mallat [11] and widely spread in engineering practice without much of a
rigorous foundations (cf. [1]). A theoretical analysis of this method was
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recently performed by Donoho [ 5], who has shown that it produces a sort
of multi-resolution analysis, though the very form of the wavelet i in the
decomposition (2) depends on the parameter j; thus, reconstruction for-
mula (2) is inapplicable. However, he shows that this method is efficient for
coding (this was Mallat’s purpose) since the coefficients f; are still small
if f'is smooth.

We propose here a simple quadrature method for computing wavelet
coefficients of a function with regularity s, s < M + 1; this method coincides
with preceding “naive” transform if ¢(x) has M vanishing moments, i.e.
[ x'@(x) dx=0 for I=1, .., M (cf. Section 2.3).

ArcoriTHM 1. Find a finite sequence (¢;) such that
f B(x) dx = th [=0,... M (4)

(where 0°=1) and put
K =2" //2ZCf I(i+k)). (5)

Remark. In d dimensions, /=(/,..,1,) and i=(i,, .., i;) are multi-
integers, .7 _, [, <M, and 2~/ becomes 2 /2,

Theoretical bases for this procedure are given in Proposition 2. In
simpler words, the idea is that this quadrature formula is exact for polyno-
mials of degree < M; thus, using Taylor’s formula in Eq. (3), one suggests
that the quadrature error would be quite small.

Consider N =2/ and suppose that a filter {¢;} of order / is used. Then
for a data sample of size N the algorithm above uses 2/x N elementary
operations in order to compute N coefficients o; ;.

Then the whole effort to compute the coefficients a, and g, for
0< j<jo from a is of order N (cf. (18), (19) in Section 3).

2.2. Regular Boxcar Design

The algorithm consisting in taking the observations A7/ for the estimates
of the wavelet coefficients a; (N =2’) was first analyzed theoretically by
Donoho in [6]. He also considered an alternative approach which consists
in using a it biorthogonal wavelet transform [4]. We consider the follow-
ing

ALGORITHM 2. j is fixed and we observe

) 1/2 ) .
Ajf.kzj fQ i (k+x)dx  k=1,..,27 (6)

—1/2
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Find a finite sequence (¢;) such that

- - 12/+1_ ~_12[+1
J ) dry o LUEV =12

i

and set

Gyp=2""7% ;AL ;. (8)
The remark after Algorithm 1 remains valid for this algorithm. It can

be easily verified that the approximation (8) is exact for polynomials of
degree <M.

2.3. Computing the (c;) Sequence and the Choice of the Wavelet

Note first that the choice of this sequence is generally non-unique since
the number of unknowns may be larger that the number of equations.

If one uses Coiflets (cf. [4], p. 258), ¢;=0, is also convenient for
Algorithm 1 since ¢ itself has M vanishing moments, i.e.,

jx'gb(x) dx=0, I=1,., M

(see, for instance, Chap. 6 of [4]).

One the other hand, if orthogonal wavelets are used, Lemma 4 below
implies that ¢, = ¢(i) is a convenient choice of the filter ¢, for Algorithm 1.
It can be easily verified that in this case the computed coefficients a;, S
are

N

a,(:% § fUIN) ¢ (i/N), B, =% Y SUIN) Y (i/N).

i=1 i=1

In this case the result of Algorithm 1 is the “empirical wavelet transform”
(cf. [7]).

In the case of the boxcar design and orthogonal wavelets, Lemma 4 and
Assumption 1 imply that ¢;=>,.,¢'(i—k/2) is a convenient filter for
Algorithm 2.

The ¢; sequence required in Algorithm 2 may be chosen as (J,, in the
case of biorthogonal wavelets with ¢ = “Haar function” (cf. [4, p. 272).

2.4. Irregular Design

We use the same algorithm in both cases of jittered and random designs,
though the parameters of the algorithm are chosen differently.

The algorithms consist of two stages: in the first step we compute the
least-squares estimates f; of the values of /(2 /(K + 1/2)) at the knots of
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the regular grid (of the averages over cells of the regular grid) for some

resolution j (we discuss the choice of j in Section 5 below). Then we use

Algorithm 1 (Algorithm 2, respectively) to compute wavelet coefficients.
This leads to the following algorithms:

ALGoriTHM 3. Consider 27 intervals A4, =[277, 27/ (k+ 1)[, k=0, ...,
27— 1, where the resolution j will be given below. We denote by I, the set
of indices I, = {i: X; € A}, |I;| =card(I}).

Choose j such that

N i N
4M+1) T2AMA+1)

for the case of regular jittered grid and

N <2/<
2.In N Aln N

for the random design case (the value of 1 will be chosen later).
Let P,(x) be the solution of the minimization problem

Py=arg min > (P(X)— f(X))

ielys

where the minimum is taken over all polynomials of degree M. Then we put
Je=P27(k+1/2)). 9)

Next we use the estimates f, to compute the wavelet coefficients & using
Algorithm 1 (Eq. (5)):

&y = Y 2 fi s
i

Remarks. In d-dimensions, k= (k,, .., k,) and i=(i, ..., i,) are multi-
integers, A, becomes a hypercube, and 272 and 2~/ become 2 /¥? and
2~/ respectively.

Note that P* is a least squares polynomial approximation of f on A,.
So fk is a kind of least squares estimate of /(2 /(k + 1/2)). It can be easily
verified that f, = f(2 /(K + 1/2)) exactly when the function fis a polyno-
mial of degree < M. The choice of the argument in (9) is not unique. For
instance, one can estimate the values of f(277k) or f(27/(k+1)),
k=0, .. 2/—1, etc. Another interesting use of the estimate P, is provided
by the following.
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ALGORITHM 4. Consider the same construction as in Algorithm 3. Set
. 27Hk+1)
A, = f P(x) dx.
27Tk

Here /i‘,-,( are the estimates of AIQ of (6). Then we compute the estimates &
of wavelet coefficients using Algorithm 2:

e Jr2 4
O(.j/‘. = Z C,»2 Aj,k—}—i'
i

3. WAVELET DECOMPOSITION AND BESOV SPACES

This section summarizes basic properties of biorthogonal wavelet and
relations between wavelet coefficients norms and norms in Besov spaces
(Theorem 2). d is here the dimension of the Euclidean space.

3.1. Biorthogonal Wavelet Bases

We recall in this section some basic properties of biorthogonal wavelets.

DerFNITION 1. A biorthogonal basis of a Hilbert space H is a pair of
Riesz bases ((a;)ycn» (bi)ien) such that {a,, b, =d,.>

One can prove that any element f of H has the biorthogonal decomposition

f:Z {frag) by.

DEeFINITION 2. A biorthogonal multi-resolution analysis is a pair of
functions (¢, ¢) of norm 1 of L,(R) and spaces

V,=span(¢,., ke Z), Gulx)=2"¢(2'x — k),
I?izspan(@,k, keZ), (}:jk(x) =2/2¢(2/x — k)
with the properties
(AMBl) nV,={0} and nV,={0},
(AMB2) UV,=L,R) and  U¥,=LyR),
(AMB3) V,cV,., and ¥V, cV,,,,
(AMB4)

(Do) ez (50,(),(62) is a biorthogonal basis.

2{-,-> denotes the inner product.
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These assumptions imply the existence of two square integrable sequen-
ces (h;) and (hy),

$(x) =23 hd(2x —k), (10)
$(x) =2 X hied(2x — k), (1)
which are the key of the construction of biorthogonal bases of L,(R):

THEOREM 1. Under assumptions (AMB1-4) we define . , w;, W/ with

W) =2 gd(2x—k),  g=(=1"""hy_y, (12)
P(x) =23 g.d(2x—k), =D " hy (13)
W, =span(y ., ke Z), Wj=span(l%k, keZ). (14)

Then the pair ({$;, Yy, j=0,keZ}, {9, 1/~/jk, j=0,keZ}) is a biortho-
gonal basis of L,(R) and more precisely

Viei=V,@ W, 17./+1=I~/./@W1‘
V,Lw, WV, Lw, W, LW, k#j

We have also
V232x—m)=Y g, W(x—k)+h, _yd(x—k). (15)
k

The proof of this theorem is standard Hilbert space manipulations and
will be omitted; more details may be found in [4]. In practice, ¢, ¥, @, ¥
have compact support and 4, g, /i, § have finite length. Most popular exam-
ples of such bases are given in [4].

Equations (11), (13), (15) imply that f can be represented as

f(x):Z“k¢0k+ Z ﬂjk‘pjk (16)

Jj=0,k

where the coefficients

e =<fibu>,  Bup=<Lfith) (17)
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satisfy the analysis/synthesis relations:

0?//(:2%1—2/(0?/“,/ (18)
ﬁjkzz glfzkajJrl,l (19)
O(jkzzhk—ﬂaj—],l-'_ gkleﬂj—l,b (20)

Wavelet Bases in Dimension d>1. We start with a one-dimensional
multi-resolution analysis and define

¢_/k(x) ¢]k,(x1) ¢jkd(xu') (21)
ij(x) = ¢jk1(xl) ~/kd( (22)
where k= (k,, ..., k;) is a multi-index and

V,=span(¢;(x), ke Z9) ”
7, = span(d(x), k e Z). (23)

We use the same apparent notation for the wavelet in dimension one and
the d-dimensional wavelet; there is however no ambiguity since the dimen-
sion of the argument and of the indices indicates what function is con-
sidered. To construct the spaces W, we introduce the 2¢—1 functions
Yy (x) made of arbitrary products of ¢(x;) or y(x,), i=1, .., d, such that
at least one function Y(x;) is used. For instance, for d=2 we obtain

Y (x) =d(xy) Y(x,)
YP(x) = (x;) dlx,)
YO(x) =h(x)) Y(x,).
If we put
YR(x) =22 Zx — k)
W,=span(y, ke Z% 1=1,..,27-1)

and do the same with the “tilded” variables, we obtain the same relations
as given in the theorem (this is straightforward point). Thus, setting

Yux) = (WD), o Y2 D)) T (24)

(the notation is unambiguous, cf. the comment after Eq. (23)) and

Oc]k:<f;€£jk>a ;:<fa {/;jk>a
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(B is row vector) we can, as before, represent f as

JX) =Y o)+ 3 Buthulx). (25)

j=0.k

3.2. Besov Spaces

We follow the presentation in Sections 3.4 and 3.5 of [17].
For any measurable function f, u>0, and integer M we define the
functions

) 1 1/u
osel fiv=int ([ lf-poId) 20

where the inf is taken over all polynomials P of degree no more than M
(usual modification when u = o0). Then we put

0% =osc) f(277k,27). (27)
The following result is a simple corollary of Theorem 3.5.1 in [17].

ProrosiTiON 1. Let 0<p, g<oo, s>d(1/p—1/max(u,1)),, and
M=[s]. We set

0 1/q
Vi ) =111, + < Y 2o |;’> (28)
j=0

(modification if q, p= o). Then, for s, p, q fixed, those norms (quasi-norms
if p or qis <l1) are equivalent (when u varies in such a way that
u<(l/p—s/d)="if s<dlp, u>0 if s>dJp).

Proposition 1 can be obtained from Theorem 3.5.1 in [17] if we note
that

osc” f(x,2 /)= 2" oscM f(x,27/7 1),
and
osc™ f(x, 27771y <2 oscM f(27 7k, 277)

for [x —2 k| <2/~

Remark. Note that Hj(;f) represents the error of approximation of f by a
polynomial in the neighborhood of radius 2~/ of 2 /k; thus 6!, is the
L, error of the approximation with the best piecewise polynomial function.
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P s dy.
Now we define the Besov space B, (R“):

B, =1{/€ Lunax(p. (R, v (f) < 0} (29)

with the norm (or semi-norm) |-|,,, being one of the equivalent norms
(semi-norms) v{)(-). Theorem 3.5.1 from [17] states that this definition of
Besov spaces is equivalent to other characterizations (see, for instance,
Section 2.5 of [17]).

We recall now some injections between Besov spaces and more standard

function spaces; we denote the Holder and Sobolev spaces

C*={fysup |h| | f(x+h)— f(x)| <oo,and | f] . < oo} 0<s<l1

Wy ={LIF (4 Ix) Dl <o} 520

(W, is the space of function of L, such that their derivative of order up to
s arein L,).

e B =Cfor0<s<l1
s 0
e B, =C"for s>djp
e B, cW,<B,, for p<2
* B,=W;,<B, forp=2
The next result is proved in the Appendix; it relates Besov norms and

wavelet coefficients, and it explains the popularity of Besov spaces in the
wavelet community [5]-[8]:

THEOREM 2. Let O0<p, g<oo and s>d(1/p—1),. Suppose that
Assumption 1 is satisfied with M = [s]. Then if a; and B, are the wavelet
coefficients of Eq. (25), the norm | f|,, is equivalent to the norm

1/q
qu(f) = HOCH,,‘F ( Z D .Jals +d/2 —d/p) ”ﬂ/n |;1> .

j=0

An analogous result was shown in [ 12, Section 4.6] for the orthogonal
wavelets and p, g > 1. The case p <1 was considered in quite general set-
tings in [15] and [8]. In order to obtain the result analogous to that of
Theorem 2 the following condition was required in two latter papers:

o {$(-—k):supp ¢p(-—k)n (0, 1)!# &, ke Z} form a set of linearly
independent functions on [0, 177

This condition is verified for the B-spline biorthogonal wavelets.
However, it is well known that this condition is not satisfied, for instance,
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for orthogonal Daubechies’ wavelets [ 13], widely used in estimation and
compression [ 1, 4].

It is interesting that the proof of the theorem does not actually require
the multiresolution structure (scaling property) and Assumption 1 can be
replaced by

Assumption 2. The tuple (¢, i, é, ) is such that {d(x—k), Y(2/x —k),
j=0, keZd} and {¢(x —k), (2 —x—k), j=0,keZ? are a biortho-
gonal pair of two bases of L,(R?), such that ¢ and  are C**! for some
MeN. (¢, Y, ¢, ) have compact support. § is orthogonal to polynomials
of degree <M.

Note that Besov spaces over (0, 1) can be defined as in (26)—(29) with
the only difference that the oscillation in the definition (26) should be
restricted to (0, 1).

Suppose that ¢ and  generate an orthonormal basis on R and Assump-
tion 1 holds. It has been shown in [3] and [2] that an orthogonal wavelet
basis on [0, 1] can be constructed by retaining those basis elements whose
support is included in [0, 1] and adding a finite number of adapted edge
wavelets and scaling functions at each scale. These edge elements can be
tailored so that

1. the edge-adapted wavelets are orthogonal (on [0, 1]) to polyno-
mials of degree M, for some MeN;

2. edge-adapted wavelets and scale functions are CM*1(0, 1);

3. the total number is exactly 2/ at resolution j.

Then the characterization of Besov spaces on (0, 1) using the coefficients of
wavelet decompositions analogous to Theorem 2 can obtained; the proof
can be taken over following exactly the lines of that of Theorem 2.

4. REGULAR DESIGN

In this section we consider the general multi-dimensional situation. We
recall the convention we use for the notation of multidimensional wavelets
(cf. the remark after Eq. (23) and Eq. (24): Y, ke Z¢ is a (29— 1)-dimen-
sional vector-valued function and f, is a (29— 1)-dimensional vector.
P.f =%, a,¢,(x) is the projection of fon V.

J*

4.1. Regular Point Design

We denote Fj S =2k Xpdu(x), where a; are computed according to
Algorithm 1. We show first that the approximation P, fis closed to f when
[ satisfies Besov constraints:
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ProPOSITION 2. Let s>d/p, 0<p, g< o0, p' =p. Suppose that Algo-
rithm 1 is used and that Assumption 1 holds with M = [s]. Then there exists

C such that for any fe B, , supp(f)e [0, 119, and j, the approximation P,f
satisfies

1/q
<Z 1P,f — Pfls,,,,> S C Sl pg (30)

1Pf = flly <CUfllpg2™"  where s'=s—d/p+djp’. (31)

Proof of the Proposition. We will need the following

LeEMMA 1. Let Assumption 1 hold. Then there exists C and j, such that
for any fand j= j,

204 [ f(x) P2 — k) dx =Y e, f(2 7k +1))| < CO), 1oy

i

where the oscillation 9;.,?) is defined by the Eq. (27) ([ -] denotes the integer
part).

Proof. Let us choose j, such that supp(¢) U {i, ¢, #0} = {|x| <2’} and
consider the best polynomial P of degree M =[s], to approximate f at

2k at the resolution j — j, (in the sense of the definition (26) with u = o).
Then

Z‘idjf(x) (2/x — k) dx—zCi (Z‘i(k-i-l))’

<\ = PHE k) ) d

+“( J(k + x)) ZCP k+1))‘

Z (P—f)(2 k+l))’
= | U= P00 )|+

Zcf(P—f)(Z-"(kJrl))‘

i

CHJ Ja» [2779] I

LEMMA 2. Let Assumption 1 hold and s — dfp + d/p’ > 0. Then the projec-
tion P; [ on Vy satisfies:

1P f =l < CO—M =
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Proof. Let p’ > 1. We have by the Minkowski inequality:

i Z .Bjk ‘//jk(x)

J=Jy k

1P f =Sl = Z

P =

(32)

Zﬂjk jk

»

If / denotes the volume of the wavelet support, we get (recall that ke Z9 is
a multi-index):

1P f =Sy <TI )™ )

J=J

id/2
Zﬁjkzj / Lisiech<aintny
k

P

<C Y 2HRHE B (33)

i=J
Note that [|8; |, < |B;.ll, for p’>p. So Theorem 2 implies that
Hﬂj ”p’ < C Hf”qu 2*](54'11/2*01/17)‘

When substituting this bound into (33) we obtain the lemma for p' > 1.
The proof for p’ <1 can be carried out in an analogous way if one uses the
inequality (51) instead of the Minkowski inequality in (32). |

We can continue the proof of the proposition

HF,f—P,pr = Z (d/k_ajA») ¢jk
k r
< C2/d/2—djp") Z " ¢0k (34)
k

Since ¢ is compactly supported, we have (cf. (54) in the Appendix)

Z (Ozjk - ajk) Pox

k

/Hp

<Clloll, lla;. —o
»
When combining with (34) we obtain from Lemma 1

HF}f_ijHp’ = C2_i(d/2*lf/11') ‘|H§Cf;u, Hp’ < C27-j(“'7d/l)+d/p,) Hf”&pqs

which gives the second statement of the proposition. To show the first one
we note that P;fe B; . Furthermore, since

A2 g < C2~ L)l g (35)
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(cf. [17, 2.3.3, comments after Eq. (13)], we have, from Theorem 2 and
Assumption 1:

IP— Pty = Hz (a0 — ) 2972( 2 — k)
k

spPq

gczj(sfd/p+d/2) Z " x k)

k
= (/s —d/p+dj2) HOC' —oc- H

spq

P

<C20 =1+ (1)) 1047

g -

Note that for 0<j<j,, 0\ =07 (f(27%.), and for these ;’s,
HH(@) Dy <C I QRN gy < C" 1277 )| g Along with the definition
of the norm | f|,,, (Proposition 1) this implies

spq

1/q
<Z|Pf Pfls,,,,> SC[fllgpg 1

=0
4.2. Regular Boxcar Design
Set

ij :Z d/’k¢jk(x)7 (36)
k
where & are obtained using Algorithm 2.
ProposiTiON 3. Let s>d(1/p—1),., O0<p, g< 0, p'=p, j,=log,
a+ 1. Suppose that Algorithm 2 is used and that Assumption 1 holds with

M ={[s]. Then there exists a constant C such that for any f, supp(f)e
[0, 1] and j the approximation P,f satisfies

1/q
<Z I1P,f — Pflsp,,> S C|flpq (37)

IBif =Pflly <Clfllpg 2" where s'=s—djp+djp'. (38)

The proof of the proposition can be carried out in the same way as that
of Proposition 2 if we substitute Lemma 1 with the one below:

LeMMA 3. Suppose that Assumption 1 holds and Algorithm 2 is used.
Then there exists C and j, such that for any fand j= j,,

2jdff(x) $2x—k)dx =3 ¢ Af | SCOL, ooy
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Proof. We choose j, as in Lemma 1 and the best polynomial P of

degree M to approximate f at 2’k at the resolution j— j,. It follows from
Eq. (7) that for any polynomial P of degree /< M

| P(x) g(x) dx =Y ¢, 45,

Then

Jd/2 j S(x) d(x)dx =3 CfAj{k +i

<| [ k)= P2 430 90

+UP(2’(k+x zc, I

i fk+i_z ciA'j{kH
=101 [ @) = P2 e ) d

Flel X[ IPQ ki x) — f(2 (k4 x)] dx

i Vlxl<1/2

(1)
<COV

J—Ja>
4.3. Filter (c;)

As we have mentioned in the Introduction there are many different ways
to define the filter sequences (c;) in Algorithms 1 and 2. Since ¢ is a con-
tinuous function with compact support which satisfies Eq. (11) above, it is
not difficult to check that the numbers M, = j x'P(x) dx satisfy M,=1 and

A L

(the sequence 4, here is defined in (10)). There exists quite a simple way
to obtain the sequence (c;) for the orthogonal wavelet basis (¢, ¥ ;). The
idea of the following lemma is borrowed in [16]:

LEMMA 4. Let (¢) be an orthogonal multi-resolution analysis satisfying
Assumption 1. Then for any k=0, ..., M.

Y 790) = [ y*9(») dv
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Lemma 4 suggests that a possible way to choose c¢; in the Algorithm 1
when orthogonal wavelets are used is simply to put

We note that the length of the filter (¢;) in this case is at least 2M (cf.
Chap. 6 of [4]), though the minimal length solution of the system (39)
contains only M + 1 coefficients.

Proof. The condition of the compact support along with vanishing
moment assumption imply (see the Proof of Corollary 5.5.4, p. 155 of [4])
that ¢ and ¢ are rapidly decreasing, and ¢@(27j)=¢'(2nj)=--- =
¢V (27j) =0 for j#0. We use the Poisson formula (cf. [ 18, formula 13.4 on
p. 681])

XS =X f(2rj)
with f(¢) = t*¢(t — x):

Y/ —x) =Y oM e " pl)

w=2nj

= l.kak(eiiwxé(w)) |zu:0
k .
=3 (5) i)

r<k

=2 <k> i [ (=) ) dy

This implies the lemma. |

Using the same method, we could prove the following result: denote by
¢o(x) the function defined by the equation

o =[ g ay (1)

then for any k=0, ..., /-2,

o (+3)  =(-3) =] e a
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4.4. Lower Bounds for the Approximation Rate

Let us consider the case d=1 for the sake of simplicity. We claim that
the approximation bounds obtained in Propositions 2 and 3 are tight.
Indeed, the following lower bound for the approximation rate can be easily
obtained (compare to the Kolmogorov—Tikhomirov diameters [9]):

ProrosiTION 4. Let s> 1/p, 0 <p, g < 0. Then there exists a function f,
1Sl spg <1, and ¢ >0 such that for any approximation fy based on the dis-
crete observations f(i/N)i=1, .., N

”fN_f”p'ZC ”fH.rquiS' where S’:S_l/p-"_ l/p/
The same bound holds true for the averaged scheme.

Proof. Take j such that N <2/<2N. Suppose that the wavelet (x) is
compactly supported, supp(Y)=[ —a,a], and Y(x)eC’, r>s. If j, <
log, a + 1 then for all /=2%(i+1/2), =0, .., N—1,we have ¢, ;, ,(i/N)=0.
Consider two functions

Jo(x)=0 and Si(x) =ﬂ¢_/+_/u,2f“—1(x)s (42)

with g=2"Ut/s+12=1p)  Qbviously, using the norm of Theorem 2,
[fillpg=1. On the other hand, we cannot distinguish f, and f| using only
the observations f(i/N), i=1, .., N. Thus

fm}fle ”f_fNHp' =>1/2p ”l//j+j(,,j/“—1 ”p
J =J1.J0
— 1/2[3 20+ Ja)(1/2 — l/p’>‘|w”1}, =c2 .

The second statement of the theorem can be obtained in the same way if
we note that for f defined in (42) all 4} =0 because | y(x)dx=0. [

Jk

5. IRREGULAR DESIGN

In order to simplify the presentation we consider only the case d=1 in
this section. The generalization of the results stated in this section to d > 1
is rather straightforward, though tedious. We suppose that the observa-
tions f;= f(X,) are available at the points X;, i=1, ..., N.

First we present an explicit solution of the least squares problem in
Algorithm 3; a change of variables is introduced for the easiness of the
proof. We put

Z(x)=(1,2x —k, .., (2'x —k)™)T
Zk, =Z (X))

1
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Then the polynomial P, may be written
Pu(x)=07Z(x)
where the vector 0, is the solution of the minimization problem

0, = arg min Y (0"Z,— 1)

iely
Thus
k z ft k,i (43)
|Ik| iely
where
1
chi iZfi'
k |Ik|[61k k ik,

Hence f, =P, (2 7/(k+1/2)) (cf. Eq. (9)) and Ay =2" [P P.(x)dx in
Algorithm 4 can be computed as

fo=u"0,, u=(1,1/2,.,2-™")7
T
=270y u=(1,1/2, .. L )
Kk B s 5M+1

The following simple proposition provides us with the estimate of the rate
of approximation obtained using Algorithms 3 and 4 when f belongs to a
Besov class.

ProrosiTION 5. Let s> 1/p, 0<p, g< o0, p' =p. Suppose that Assump-
tion 1 holds with M = [s] and that j is such that for any k=0, .., 2/ —1 the
gain matrices V' are bounded. Then for any f, supp(f)e[0,1], the
approximation

P ,f = Z ‘ijk ¢jk
k

satisfies
l/q
<Z I1P,f— flsp{,> S C S lspq (44)

1Prf = flly <CUfllpg 2™ where s'=s—1/p+1/p'. (45)
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Remark. Proposition 5 gives an upper bound of the rate of convergence
of the projection P, if the norm of “gain” matrices ¥, ' can be controlled.
We show in the next subsections how this condition can be checked in two
particular cases considered in the Introduction.

Proof. We provide the proof for Algorithm 3. The same estimate for
Algorithm 4 can be shown in a completely analogous way. Recall that the
algorithm creates new “observations” on the regular grid 2’k using the
least squares method, and then uses Algorithm 1 to compute the estimates
d; of wavelet coefficients. Thus the approximation error Hlsj f—fll, can be
separated into two parts:

18,f = flly < CPINPf = Pif Nl + I1Pf = f1,) = C(p)(d, + ).

Here 6, is the error of estimating the projection P,/ with 15j f, and 9, is the
error of approximation of P,f using the observations on the regular grid.
From Proposition 2 we have the estimate for J,:

52 < C Hf“qu 27]

As in (34) we have for J,

=|P.f—P,fll,=<C2/2=V) g, —a, |,. (46)
On the other hand,
| — | <2772 | Y ei(frwi— 27 (k+1+1/2)))
1
SC2 Y | foy = SR (k+1+1/2)). (47)
/

Let P be the optimal polynomial in the definition (26) of 04<). If
V' < C, then
fevr= 2 (k+1+1/2))]
1
<| ¥ T Z )~ PX)

|Ik| iely

+ ‘lll u' V' Z P(X;) — P2 (k+ 1+ 1/2))‘
kliern

+| P2 (k+1+1/2))—f2 7/ (k+1+41/2))]

(o0
<c 91 o2 ,uk]-i-()-l-@ Ja (2]
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(cf. the comment after Algorithm 3). Along with (46) and (47) we have
by (28)

51 < C2 - Hej(f)/“ [2*/‘“/5] Hp’ < C2*]‘(-Y* V1) Hf”,\'pq I

5.1. Jittered Grid
Let X;, i=1, .., N, be the points of the jittered grid. We take

N _
- 2./ < _—
AM+1) "7 SamM+1)

Then |I;| =2(M + 1) and we get the following

LEMMA 5. There is C< oo such that |V, '|<C.

Proof. For the sake of simplicity we suppose that 2/=N/2(M +1)
exactly, and |I,|=2(M +1). Let 4, be the smallest eigenvalue of V,, and
U, |ul =1, the corresponding eigenvector. Consider the polynomial

M
B(z)=Y wz' for ze[O,1[.
1=0

Note that among 2(M + 1) points 27X, —k, i eI, there are at least M + 1
“well distanced” points zy,..,z,,,, such that inf, , .|z, —2z,|=
2-M=! Then

1 1 M+1
Ao=—— B (z)z2——— BXz,)=cy>0,

0 HM+U;k() ﬂM+UE1( )> <o

because the polynomial B*(z) has only M different roots and the sequence
(z,,) is taken from a compact set where the latter functional is strictly

positive. ||

When combining the results of Proposition 5 with the lemma above we
obtain the following:

PrOPOSITION 6. Let s>1/p, 0<p, g< o0, p’' =p. Suppose that Assump-
tion 1 holds with M =[s] and that X;, i=1, .., N, are the points of the
Jjittered grid. Let j be such that

N N
HM+1) T2(M A1)
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Then the approximation Pj 1 satisfies

1/q
<z |P,f—f|;{,,q> anm
J
1Pf =flly <CUfllg N~ where s'=s—1/p+1/p".

Remark. 1t can be easily verified that one needs O(M?) elementary
operations to compute 0, from (43) on a segment A,. The bound (48) for
2/ (for 2% in the d-dimensional case) then implies that the total effort to
compute the coefficients &, will be of order N x M.

5.2. Random Grid

Let X;, i=1, .., N, be independent and identically distributed random
variables on [0, 1] with density p(x), 0 <pin <P(X) < Pmax < 0. In order
to obtain the bound for the rate of approximation it suffices to find the
largest j such that all |V '| are bounded with overwhelming probability.
Consider the following algorithm: Take j such that

— 2/ ) 49
NS S N 49)
Compute

R 1

Ji=—" Z “TVI:lzk,if(Xi)-

|Ik| iely
Then form
OA‘jk:Z 27_,-/2clfk

and

Pif(x)=Y dudulx).

Note. Note that O(M?x |I,|) elementary operations are required to
compute f,.. Since we have the overwhelming probability that |1, | = O(In N),
we conclude from (49) that the average effort to compute the coefficients
&; will be of order N x M.

ProrosiTION 7. Let s>1/p, 0<p, gq<oo, and p'=p. Then for any
y< oo there are Ay(y) such that if Ly <A< oo then

. In N\ )
P18~ 21,2 CO 11 (B | )< CotIN
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where s'=s—1/p+1/p'. (Here P(-) is the probability by the joint measure
generated by (X;), i=1, .., N.)

Proof. The proof of the proposition is based on the following simple
LEMMA 6. There is a>0,
E[V 12N 27 puinl

(here E[ -] stands for expectation by the joint measure generated by (X;),
i=1,.., N). Moreover, for any ¢ >0 there are C and C' < oo such that

P(| I | = NP(X, € 4;)| 2 eNP(X, € 4,)) SCN 7,
P(\Vi | = ELVic L | )| Z €EL V) [ [ ]) S CN T

for any 2= Ay(y, ¢) in the statement of the proposition.

Proof. To prove the first assertion we compute for an ae R+, |a| =1,
a'E[Vi |l |1a=Na"E[Z, \ Z] |1 {x,cay ] a=NE[B(Z'X, = k) 1 x,c 3],
where B(z) =3 a,z' we get

d"E[V, |I,|]a :NL B(2/x —k) p(x)dx=N2"p_.. jol B(2) d-.
k
The latter integral is positive uniformly in the compact set |a| =1:
Ll B(z) dz = a(M) |a| = (M) > 0.

This gives the first inequality of the lerrdlrlna.
Note that N 'E[|[,|1=P(X, e 4,) = p,, and

2
} =N(pr— plz() < Npy.

| |1,(|—Npk|]2=E{

N
Z (l{iEIk} — D)
i=1

When using the Bernstein inequality, we obtain for ¢ < 1

azszz 82Np
P(| || — Np,| =¢eNp,) <2 — k <2 —k>.
(| 1| — Npe| > Npy) exp( szk+<z/3>ngk> eXp< 3
Since
pk>pmin27j>w

N >
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we have

Pminde’In N

P(||Ik|_NPk|)>8Npk<26xp< 3

> <2N77
for any 4> 3y/e?p,.;.. The last inequality of the lemma can be shown in an
analogous way. ||

We continue now the proof of the proposition. We denote A,,;,( V) be
the minimum eigenvalue of V. Note that

Aanin Vi) = 1Ll ™ Amin Vi 1 1)
2L Amin ELV 1 11)
1] D Vi LI | — EL Vi |1 ] 1)
>0 g <y Amin(ELVi 1)
—a = sy Vi il = ELVi 1]
=0 gy Zmin ELVi D)
=0 s Bl v i - v 11 <5 -

We put
a, =(14+¢) Npy, a_=(1—¢)Np,, pr=P(X,€4,;)
and
B=ceE[ Vil |];

then using the result of Lemma 6, we obtain

1—2¢e—¢>
PtV SN i ELV LD )

S P(| (L] = Npi| = eNpy) + P(|Vi (1 | — ELV [ | 11 Z eE[ Vi 1| 1)
<CN™. (50)
Since for e < 1/3

1-2¢—¢> , )
ﬁNqP[lE[ Vil 12 ¢ 27 prinpi ' 2,
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the bound (50) implies
PV, H<()")<CN .

Along with the result of Proposition 5 this gives the proof. ||

Remark. Note that the bounds shown in Proposition 6 and 7 are tight.
It is demonstrated by the following

PROPOSITION 8. Let s>1/p, 0<p, g<oo. Then there exists a function f,
1/ lpg<1, ¢>0, and a>0 such that for any approximation method
f(f(Xl) f(XN)) based on the discrete observations f(X;), i=1, ..., N,

1. if X,,...,Xy are the points of a regular jittered grid, then
HfN fHP /C ”f”quN_S';

2. lel, ., Xy are the points of a random grid, then P(||fy— f1|, =
CHfHW, )>o where s'=s—1/p+1/p'.

Proof. The proof of this statement is analogous to that of Proposi-
tion 4. For instance, in the case of the random grid it suffices to note that
there exists k such that P(X, € [k/N, (k+1)/2)/N])<1/2N, thus for some

a>0,
P<card {i:X,-eL];,(k—Svl/z)}}=O>>oc. |

APPENDIX

When compared with other proofs [8, 15] of the characterization of
Besov spaces by wavelet coefficients, the Proof of Theorem 2 below is very
direct: in order to prove the lower characterization, a polynomial
approximation of functions ¢, and v is used rather than the condition of
independence of translations ¢(- —k) and (- —k) on an interval.

We shall use the following inequality for L, quasi-norm: for p <1, if f
and g are measurable functions, and if (x,) and ( y,) are real sequences one
has

lx+yly<lxliy+Iyly  and  [f+gly<I/l;+lgly. (51)

We recall the convention we use for the notation of multidimensional
wavelets (cf. the remark after Eq. (23) and Eq. (24)): ¥4, keZ is a
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(29— 1)-dimensional vector-valued function and S, is a (2¢—1)-dimen-
sional vector.
We need the following lemma.

LemMMA 7. For any a>1 and q>0, there exists C,, such that for any
non-negative sequence (X;);,

q
Y a/‘1<z x,> <C, Y a"xj. (52)
j=0 I>; >0

For any a<1 and q>0, there exist C,, such that for any non-negative

sequence (X;);~o,

Y aj‘1<z x,>q< C,y Y, a"xy. (53)

j=0 I<j =0

Proof. We consider first the case a>1. If ¢ < 1:

q
ZM«ZxOSZa”ZWSQZa%ﬁ

j=0 I>j j=0 1> >0

and if ¢ =1, setting b=(1+a)/2:

ZW%ZLY<ZM%ZLMIY

=0 1> =0 1>
A q—1
<y afq<z x;’b"’><z b"”“’“) (Hélder)
J>0 1) =)

<c, ¥ (a/b)fb(Z x;fb"f) since b 1
j=0 I=j

<C, Y (a/b)xib™ since b < a
=0

=C,, Y x{a".
1=0

If now a<1 and g <1,

q
Y a-"’<z x,> <Y a?y xiI<C, ) a'xy.
J=0 <

j=0 1<
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If ¢ > 1, setting b= (a+1)/2, we have as before:

v a""’(Z x,>q< 5 aﬂf(z x,b’b’)q

Jj=0 I<j j=0 I<j
qg—1
j I —lg/(q—1
< Z aﬂ{(Z xquq><z b la/a )>
Jj=0 1<) I<j

<C, Y xia.
=0

Proof of Theorem 2. The proof is made in eight steps. In Steps 1-5 we
show that v, (f) <[ fl,: in Steps 1-2 we bound the f’s using the poly-
nomial approximation of fin Proposition 1 and (26); in Step 3 we bound
the a’s in the case p > 1; a particular difficulty arises when p < 1: this case
is dealt with in Steps 4-5. The proof of | f|,, < v,,(f) is made in Steps
6-7, but essentially in Step 7, where the polynomial approximation for f is
obtained using the polynomial approximation of ¢ and .

Step 1. There exist j, such that for any >0, 2/*|f, |,<
clos?,

=, -

Indeed,

202, = [ f27(x+K)) Px) dx =27 [ (f(x) = P(x)) P(27x — k) dix
for any polynomial P of degree smaller than s; thus

22 B | <O oy 1T

where j, is such that |x| <2/° for any x of the support of V.

Step 2. For j<jo, 1052 N, <Clfggs 2772 1B 11, < ClLS M gpg-
The first inequality is a consequence of two relations: first, if we set
g(x)= f(2/°x) we have

05", (f) =00 (2)
and second

gl spg < 29| £ 1] g

(cf. the inequality (35)). This bound along with Step 1 (for j < j,) and (28)
(for j= j,) gives us the second inequality of the step.
We obtain from Steps 1, 2 and (28):

z 2‘]1‘(3‘*’4/2*4/.”) Hﬁj < C Hf”qu
J
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Step 3. Ifp=1, o], < C| f]],.

Since o, = { f, 4>, we have

el _ ,,|¢(xk>|d>”1’ e
|<$|1\<J|ﬂx)| o (Holder).

Thus

PR K f SOOI Y 1d(x — k)| dx.

k

<llgly~!

> 1P(x =)l

[ 1017 ax.

[s’e]

Step 4. If p<1, fal|, < C [ Xg xx Pl

Let I and J denote the support of functions #(x) and ¢(x) respectively.
Put g=3, o, d,. Then we get for o,

ol = [ ) x =0

? P
s CQ |g(x+R)1” dX> max | g(x + k)[4 2
1 xel

The inequality (p<1,g=1—p)
Xy Spgfl/pxl/p + qgl/qyl/q

implies
217 < Cpe 7 [ [ g(x +K)1” dx + Cge !/t max | g(x +K)|”
1 xel

< Cpgfl/pf

I+k

1g(x)|7 dx+C ], qs”q< » |a,|>

leJ—T+k

<O lgolrdy+e Yl
I+k

leJ—I+k

Choosing ¢ small enough, we can have ¢ smaller than half the number of
multiintegers of J— I, and summing both sides over k, we obtain

oy < C" ligCx)lI7 + llexll /2

which is the result.
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Step 5. If p<1, | Xk ou@illy < Cllf N gpy-

In this case, we have

z A Py
k
and, using Steps 1 and 2,

Z |ﬁ,i/€|b Hlﬂ,k\l,‘K CZ |ﬁjk|p 2Jjd(p2—1) — CZ Hﬁ, Hﬁ DJd(p/2—1)
Jk i J

Jk

PLSCILIZ+CY ABwl” a2,
Jk

gc’ HfH\quzz_1d< C” Hf“?pq'
J

Step 6. | [, < Cvgy( )
Ifp>1,

11, < Y % +Z Zﬂjklpjk

p

p

Since ¢ has compact support, we can find a partition I, ..., I, of Z¢ such
that ¢, and ¢, do not overlap if k and k' are in the same /,, and

1

<y

P i=1

Z o Py

kel

! Up
= <Z loce |7 ¢k11;> <Lloll, lll, (54)

P i=1 \kel

Z o P

(the equality is due to the non-overlapping property). In the same way

SCUB; Ny Wil = C I, 1B, 11, 2742,

p

2 Bt

And since
18,1, < Cry(f) 215 42—,

we obtain immediately the result (s is >0).
The case p <1 is treated exactly the same way where Eq. (51) is used
instead of the Minkowski inequality.
Step 7. 3,277 0|4 < Cvd, (f).
Denote

ij:Zﬁjklpjk
ij: Z Qlf

1>

Pf=Y e+ Y Of

I<j
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P, fis the projection of fon V. Since ¢ and  are C**', we can find poly-

nomials ®,, ¥, and C independent of j or k, such that for

277k — x| <27/, j’<j, and any k' we have
|§1(3) = ()] < C27HMHED () = (X)) < €27 U=/ M+ 1R a2,

On each interval of length 27/ we will approximate f with the polynomial

(x)=Y o P(X)+ Y Y Brue Pyne(X)
k'

0<j'<j Kk

where each sum is restricted to those k" for which the function ¢, or ¥,
i1s non-zero on the interval; each sum on k' contains at most K terms where
K depends on the support of ¢ and ; in other words, there exist K such
that the first sum is restricted to |k’ —2/k| < K and, for each j’, the sum
in the second term is restricted to |k’ —1—/*/k| < K.

11, (x) = Y W Pp(x)+ Y > B ¥yie(X).
k' —2 k| <K 0<j'<j |k'—2"7+t'kl <K
This implies that
sup | Pf(x) — M| < Y 27D ey |

|27k — x| <27/ |k'72*/k\<K
+C Z Z |ﬂlk’| 2= =DM+ 1) +1d)2
I<j |k =277+l <K

and

Y osup [P f(x) = I(x)|”

ke 127k —x| <277

< C/ 2]’:12—A/'(M+l)p Ha”g_i_ C/ z 2(]’—[):1' ”ﬁ[ H;z—(j—/)p(M+l)+lpd/2’
I<j

where C depends here only on p and K.
Then

(0 <2 | |/(3) = H ()| dx

12k —y| <27

<Cosup [P f(x)— (x)|”

2=k — x| <2~/

+czfdj |R,(x)|” dx

12—k — x| <2/
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z (0;5))p <C D Jjdpy —j(M+1) p HOCH,’;

k

+ Z d(j=1) Hﬁz ‘|£27(.1‘71)p(M+1)+1pd/2

I<j
+ czfdj IR,(x)|” dx

28— g |7 < €27 a7

4 Qi M+1—s) Z 2p(M +1+d/2—d/p) 1B, 112
I<j !
+C27 [ |R(x)|7 dx = A,+ B+ C,.

We have to show that 3,_, (4,+ B;+ C)?””? < Cv? (f).
Note that obviously, since s < M + 1,

Y A< Cllallf< Crgy(f)".

=0

Now using Eq. (53)

Z qu/p <C Z D s +d2—djp) q Hﬂj Hz/p < Cvqu(f)‘f.

j=0 j=0

If p>1 we obtain

q
Y =73 27|R|I< Y, 2”"(2 IQ/|p> <C ) 2701
j=0 j=0 j=0 1> j=0

(thanks to Eq. (52)), and if p<1

q/p
3 =3 2RI Y 20 3100z ) < T 2 gl

j=0 j=0 Jj=0 =) j=0

On the other hand, because of the compactness of the support of y:
1O 12 < CYBwl” Iy |7 < C2MPP2= | g |12,
k
and finally, for any p >0,

Y CIP<C Y 2P0 dna | 4< Cly,, (f).

j=0 j=0

Step 8. End of the proof.
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Putting together the results of Steps 2, 3, 5, 6, and 7, we obtain the

theorem. ||

12.
13.
14.

17.
18.
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